organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2-Chlorophenyl)(4-hydroxy-1,1-dioxo-2*H*-1,2-benzothiazin-3-yl)methanone

Nazia Sattar,^a Hamid Latif Siddiqui,^a* Matloob Ahmad,^b Waseeq Ahmad Siddiqui^c and Masood Parvez^d

^aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, ^bChemistry Department, Govt. College University, Faisalabad, Pakistan, ^cChemistry Department, University of Sargodha, Sargodha 40100, Pakistan, and ^dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Correspondence e-mail: drhamidlatif@hotmail.com

Received 8 March 2012; accepted 1 April 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.006 Å; R factor = 0.068; wR factor = 0.138; data-to-parameter ratio = 15.8.

In the title molecule, $C_{15}H_{10}CINO_4S$, the heterocyclic thiazine ring adopts a half-chair conformation, with the S and N atoms displaced by 0.527 (7) and 0.216 (7) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The molecular structure is consolidated by an intramolecular $O-H \cdots O$ interaction and the crystal packing is stabilized by $N-H \cdots O$ and $C-H \cdots O$ hydrogen bonds.

Related literature

For background information on the synthesis of related compounds, see: Siddiqui *et al.* (2007). For the biological activity of 1,2-benzothiazine derivatives, see: Ikeda *et al.* (1992); Lombardino *et al.* (1973); Gupta *et al.* (2002); Zia-ur-Rehman *et al.* (2006); Ahmad *et al.* (2010). For bromo analogue of the title compound, see: Sattar *et al.* (2012).

Experimental

Crystal data

C ₁₅ H ₁₀ ClNO ₄ S
$M_r = 335.75$
Monoclinic, $P2_1/c$
a = 12.1078 (6) Å
b = 8.4057 (5) Å

c = 14.7022 (9) Å $\beta = 105.541 (3)^{\circ}$ $V = 1441.60 (14) \text{ Å}^{3}$ Z = 4Mo K α radiation $\mu = 0.43 \text{ mm}^{-1}$ T = 173 K

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{min} = 0.951, T_{max} = 0.975$

Refinement

ŀ

и S

3

$R[F^2 > 2\sigma(F^2)] = 0.068$ $R(F^2) = 0.138$	H atoms treated by a mixture of independent and constrained
f = 1.12	refinement
204 reflections 03 parameters	$\Delta \rho_{\text{max}} = 0.36 \text{ e } \text{A}^{-3}$ $\Delta \rho_{\text{min}} = -0.36 \text{ e } \text{Å}^{-3}$

 $0.12 \times 0.10 \times 0.06 \; \rm mm$

5606 measured reflections

 $R_{\rm int} = 0.051$

3204 independent reflections

2383 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N \cdots O4^{i}$	0.84 (4)	2.06 (4)	2.857 (4)	158 (4)
C13−H13···O2 ⁱⁱ	0.95	2.59	3.307 (5)	132
C5−H5···O1 ⁱⁱⁱ	0.95	2.55	3.369 (5)	145
O3−H3 <i>O</i> ···O4	0.84	1.80	2.536 (3)	146
Symmetry codes: (i) $-x + 1, y + 1$	$\frac{1}{2}, -z + \frac{3}{2};$ (ii)	-x + 1, -y + 1	-z + 1; (iii)

 $x, -y + \frac{1}{2}, z + \frac{1}{2}.$

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALE-PACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2065).

References

- Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002).
- Skin Pharmacol. Appl. Skin Physiol. 15, 105–111.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Ikeda, T., Kakegawa, H., Miyataka, H., Matsumoto, H. & Satoht, T. (1992). Bioorg. Med. Chem. Lett. 2, 709–714.
- Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493–494.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sattar, N., Siddiqui, H. L., Siddiqui, W. A., Akram, M. & Parvez, M. (2012). Acta Cryst. E68, 01247.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.
- Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). *Chem. Pharm. Bull.* 54, 1175–1178.

supplementary materials

Acta Cryst. (2012). E68, o1326 [doi:10.1107/S1600536812014171]

(2-Chlorophenyl)(4-hydroxy-1,1-dioxo-2H-1,2-benzothiazin-3-yl)methanone

Nazia Sattar, Hamid Latif Siddiqui, Matloob Ahmad, Waseeq Ahmad Siddiqui and Masood Parvez

Comment

The nucleus 1,2-benzothiazine 1,1-dioxide represents a class of pharmaceutically important heterocyclic compounds that have received considerable attention because of their dynamic structural features and a wide range of biological activities. They are known to be anti-allergy (Ikeda *et al.*, 1992), anti-inflammatory (Lombardino *et al.*, 1973), analgesic (Gupta *et al.*, 2002), anti-bacterial (Zia-ur-Rehman *et al.*, 2006) *etc.* In continuation of our research on the synthesis of biologically active benzothiazine derivatives (Siddiqui *et al.*, 2007; Ahmad *et al.*, 2010) we report herein the synthesis and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported for its bromo analogue with which it is isomorphic (Sattar *et al.*, 2012). The heterocyclic thiazine ring adopts a half chair conformation with atoms N1 and S1 displaced by 0.216 (7) and 0.527 (7) Å, respectively, on the opposite sides from the mean plane formed by the remaining ring atoms. The molecular structure is stabilized by intramolecular interactions O4–H4O···O3 and the crystal packing is consolidated by N1–H1N···O4 and C13–H13···O2 intermolecular hydrogen bonds (Figure 2 and Table 1).

Experimental

A mixture of 2-[2-(o-chlorophenyl)-2-oxoethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (10.1 g, 30 mmol) and sodium methoxide (2.2 g, 40.0 mmol) in freshly dried methanol (25 ml) was subjected to reflux for 30 minutes. The reaction was quenched with ice-cold water and acidified to pH = 3 with dilute HCl. The precipitates were filtered, washed with water and ethanol (25 ml, each) to get yellow powder of the title compound (9.4 g, 70%). The crystals suitable for X-ray crystallographic analysis were grown from a mixture of solvents chloroform and methanol (2:1) by slow evaporation at room temperature.

Refinement

The H atoms bonded to C and O atoms were positioned geometrically and refined using a riding model, with O—H and C—H = 0.84 and 0.95 Å, respectively. The amino H-atom was allowed to refine freely. The U_{iso} (H) were allowed at $1.2U_{eq}$ (parent atom).

Computing details

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

A part of the unit cell showing intermolecular and intramoilecular hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.

(2-Chlorophenyl)(4-hydroxy-1,1-dioxo-2H-1,2-benzothiazin-3-yl)methanone

F(000) = 688

 $\theta = 1.0-27.5^{\circ}$

 $\mu = 0.43 \text{ mm}^{-1}$

Prism, pale yellow

 $0.12 \times 0.10 \times 0.06 \text{ mm}$

5606 measured reflections 3204 independent reflections 2383 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$

T = 173 K

 $R_{\rm int} = 0.051$

 $h = -15 \rightarrow 15$ $k = -10 \rightarrow 10$ $l = -19 \rightarrow 19$

 $D_{\rm x} = 1.547 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2930 reflections

Crystal data

C₁₅H₁₀ClNO₄S $M_r = 335.75$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.1078 (6) Å b = 8.4057 (5) Å c = 14.7022 (9) Å $\beta = 105.541$ (3)° V = 1441.60 (14) Å³ Z = 4

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
$T_{\min} = 0.951, \ T_{\max} = 0.975$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.068$ Hydrogen site location: inferred from $wR(F^2) = 0.138$ neighbouring sites S = 1.12H atoms treated by a mixture of independent 3204 reflections and constrained refinement 203 parameters $w = 1/[\sigma^2(F_0^2) + 4.364P]$ where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

$U_{ m iso}$ */ $U_{ m eq}$
0.0469 (3)
0.0281 (2)
0.0358 (7)
0.0396 (7)

03	0.3300 (2)	0.2131 (3)	0.88114 (18)	0.0340 (6)
H3O	0.3920	0.1661	0.8837	0.041*
O4	0.5099 (2)	0.1471 (3)	0.83156 (18)	0.0341 (6)
N1	0.3252 (2)	0.3988 (4)	0.6544 (2)	0.0278 (7)
H1N	0.358 (3)	0.487 (5)	0.655 (3)	0.033*
C1	0.1348 (3)	0.4509 (5)	0.7026 (3)	0.0273 (8)
C2	0.0344 (3)	0.5377 (5)	0.6909 (3)	0.0386 (10)
H2	-0.0038	0.5812	0.6312	0.046*
C3	-0.0087 (4)	0.5595 (5)	0.7679 (3)	0.0411 (10)
H3	-0.0778	0.6179	0.7605	0.049*
C4	0.0460 (3)	0.4985 (5)	0.8555 (3)	0.0386 (10)
H4	0.0147	0.5155	0.9074	0.046*
C5	0.1461 (3)	0.4128 (5)	0.8679 (3)	0.0318 (8)
Н5	0.1832	0.3699	0.9281	0.038*
C6	0.1931 (3)	0.3892 (4)	0.7913 (2)	0.0249 (7)
C7	0.3004 (3)	0.3016 (4)	0.8035 (2)	0.0253 (7)
C8	0.3659 (3)	0.3096 (4)	0.7403 (2)	0.0250 (7)
C9	0.4744 (3)	0.2291 (5)	0.7586 (3)	0.0284 (8)
C10	0.5468 (3)	0.2430 (4)	0.6910 (3)	0.0265 (8)
C11	0.6580 (3)	0.3042 (5)	0.7190 (3)	0.0300 (8)
C12	0.7263 (4)	0.3083 (5)	0.6570 (3)	0.0406 (10)
H12	0.8011	0.3525	0.6765	0.049*
C13	0.6856 (4)	0.2483 (5)	0.5672 (3)	0.0406 (10)
H13	0.7326	0.2502	0.5248	0.049*
C14	0.5764 (4)	0.1854 (5)	0.5387 (3)	0.0391 (10)
H14	0.5490	0.1417	0.4772	0.047*
C15	0.5063 (3)	0.1858 (5)	0.5996 (3)	0.0349 (9)
H15	0.4301	0.1465	0.5785	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cl1	0.0364 (5)	0.0581 (7)	0.0450 (6)	-0.0087 (5)	0.0087 (4)	-0.0126 (5)
S1	0.0242 (4)	0.0341 (5)	0.0262 (4)	-0.0017 (4)	0.0072 (3)	0.0021 (4)
O1	0.0359 (14)	0.0401 (16)	0.0324 (14)	-0.0094 (13)	0.0109 (11)	-0.0065 (13)
O2	0.0331 (14)	0.0514 (19)	0.0334 (15)	0.0028 (14)	0.0073 (12)	0.0157 (14)
O3	0.0298 (14)	0.0426 (17)	0.0314 (14)	0.0113 (13)	0.0112 (11)	0.0104 (13)
O4	0.0292 (13)	0.0410 (17)	0.0329 (14)	0.0093 (12)	0.0096 (11)	0.0062 (13)
N1	0.0233 (15)	0.0292 (17)	0.0328 (17)	-0.0023 (14)	0.0106 (13)	0.0036 (14)
C1	0.0260 (17)	0.028 (2)	0.0296 (18)	-0.0022 (15)	0.0096 (14)	0.0008 (16)
C2	0.032 (2)	0.042 (2)	0.041 (2)	0.0089 (19)	0.0087 (17)	0.007 (2)
C3	0.034 (2)	0.039 (2)	0.054 (3)	0.0106 (19)	0.0177 (19)	0.000(2)
C4	0.037 (2)	0.043 (2)	0.044 (2)	0.0059 (19)	0.0248 (19)	0.000(2)
C5	0.0342 (19)	0.035 (2)	0.0291 (19)	0.0018 (18)	0.0140 (16)	0.0007 (17)
C6	0.0235 (16)	0.0253 (18)	0.0263 (17)	-0.0032 (15)	0.0075 (14)	-0.0001 (15)
C7	0.0248 (17)	0.0252 (19)	0.0257 (17)	0.0006 (15)	0.0067 (14)	0.0005 (15)
C8	0.0217 (16)	0.0281 (19)	0.0254 (17)	-0.0016 (15)	0.0063 (13)	0.0006 (15)
C9	0.0262 (18)	0.031 (2)	0.0279 (18)	-0.0024 (16)	0.0077 (14)	-0.0055 (16)
C10	0.0248 (17)	0.0269 (19)	0.0306 (18)	0.0054 (15)	0.0124 (14)	0.0016 (15)
C11	0.0272 (18)	0.027 (2)	0.037 (2)	0.0015 (16)	0.0111 (16)	0.0030 (16)

supplementary materials

C12	0.033 (2)	0.039 (2)	0.055 (3)	0.0013 (19)	0.021 (2)	0.004 (2)	
C13	0.047 (2)	0.040(2)	0.043 (2)	0.008 (2)	0.027 (2)	0.008 (2)	
C14	0.041 (2)	0.044 (3)	0.034 (2)	0.007 (2)	0.0143 (18)	0.0022 (19)	
C15	0.031 (2)	0.042 (2)	0.033 (2)	0.0027 (18)	0.0104 (16)	0.0012 (18)	

Geometric parameters (Å, °)

C11—C11	1.737 (4)	C4—H4	0.9500
S1—O2	1.427 (3)	C5—C6	1.404 (5)
S1—O1	1.431 (3)	С5—Н5	0.9500
S1—N1	1.620 (3)	C6—C7	1.462 (5)
S1—C1	1.755 (4)	C7—C8	1.376 (5)
O3—C7	1.329 (4)	C8—C9	1.438 (5)
O3—H3O	0.8400	C9—C10	1.497 (5)
O4—C9	1.250 (4)	C10—C15	1.387 (5)
N1—C8	1.437 (5)	C10—C11	1.395 (5)
N1—H1N	0.84 (4)	C11—C12	1.386 (5)
C1—C2	1.388 (5)	C12—C13	1.375 (6)
C1—C6	1.405 (5)	C12—H12	0.9500
C2—C3	1.380 (6)	C13—C14	1.381 (6)
C2—H2	0.9500	C13—H13	0.9500
C3—C4	1.379 (6)	C14—C15	1.388 (5)
С3—Н3	0.9500	C14—H14	0.9500
C4—C5	1.379 (5)	C15—H15	0.9500
02—\$1—01	119.57 (18)	03	122.4 (3)
O2—S1—N1	108.01 (17)	03	114.4 (3)
Ol—Sl—Nl	108.05 (18)	C8—C7—C6	123.2 (3)
O2—S1—C1	110.69 (18)	C7—C8—N1	119.7 (3)
O1—S1—C1	107.08 (17)	C7—C8—C9	120.9 (3)
N1—S1—C1	102.01 (17)	N1—C8—C9	119.4 (3)
С7—О3—НЗО	109.5	O4—C9—C8	120.5 (3)
C8—N1—S1	116.8 (2)	O4—C9—C10	119.1 (3)
C8—N1—H1N	114 (3)	C8—C9—C10	120.4 (3)
S1—N1—H1N	115 (3)	C15—C10—C11	118.5 (3)
C2—C1—C6	121.0 (3)	C15—C10—C9	119.9 (3)
C2—C1—S1	121.9 (3)	C11—C10—C9	121.5 (3)
C6—C1—S1	116.9 (3)	C12—C11—C10	120.9 (4)
C3—C2—C1	118.6 (4)	C12—C11—Cl1	118.3 (3)
С3—С2—Н2	120.7	C10—C11—Cl1	120.7 (3)
C1—C2—H2	120.7	C13—C12—C11	119.9 (4)
C4—C3—C2	121.5 (4)	C13—C12—H12	120.0
С4—С3—Н3	119.2	C11—C12—H12	120.0
С2—С3—Н3	119.2	C12—C13—C14	120.0 (4)
C5—C4—C3	120.2 (4)	C12—C13—H13	120.0
C5—C4—H4	119.9	C14—C13—H13	120.0
C3—C4—H4	119.9	C13—C14—C15	120.3 (4)
C4—C5—C6	119.9 (4)	C13—C14—H14	119.9
C4—C5—H5	120.0	C15—C14—H14	119.9
С6—С5—Н5	120.0	C10—C15—C14	120.4 (4)

C5—C6—C1	118.7 (3)	C10—C15—H15	119.8
C5—C6—C7	120.8 (3)	C14—C15—H15	119.8
C1—C6—C7	120.5 (3)		
O2—S1—N1—C8	166.9 (3)	C6—C7—C8—N1	-4.5 (6)
O1—S1—N1—C8	-62.4 (3)	O3—C7—C8—C9	-3.8 (6)
C1—S1—N1—C8	50.2 (3)	C6—C7—C8—C9	175.9 (3)
O2—S1—C1—C2	33.6 (4)	S1—N1—C8—C7	-34.2 (5)
O1—S1—C1—C2	-98.3 (4)	S1—N1—C8—C9	145.4 (3)
N1—S1—C1—C2	148.3 (3)	C7—C8—C9—O4	1.7 (6)
O2—S1—C1—C6	-151.4 (3)	N1-C8-C9-O4	-177.9 (3)
O1—S1—C1—C6	76.7 (3)	C7—C8—C9—C10	-178.0 (3)
N1—S1—C1—C6	-36.7 (3)	N1-C8-C9-C10	2.4 (5)
C6—C1—C2—C3	-1.5 (6)	O4—C9—C10—C15	117.4 (4)
S1—C1—C2—C3	173.3 (3)	C8—C9—C10—C15	-63.0 (5)
C1—C2—C3—C4	0.6 (7)	O4—C9—C10—C11	-58.7 (5)
C2—C3—C4—C5	-0.2 (7)	C8—C9—C10—C11	120.9 (4)
C3—C4—C5—C6	0.7 (6)	C15-C10-C11-C12	0.3 (6)
C4—C5—C6—C1	-1.6 (6)	C9-C10-C11-C12	176.4 (4)
C4—C5—C6—C7	178.7 (4)	C15—C10—C11—Cl1	176.4 (3)
C2-C1-C6-C5	2.0 (6)	C9—C10—C11—Cl1	-7.5 (5)
S1—C1—C6—C5	-173.0 (3)	C10-C11-C12-C13	-1.5 (6)
C2-C1-C6-C7	-178.4 (4)	Cl1—C11—C12—C13	-177.7 (3)
S1—C1—C6—C7	6.6 (5)	C11—C12—C13—C14	0.6 (7)
C5—C6—C7—O3	17.5 (5)	C12-C13-C14-C15	1.5 (7)
C1—C6—C7—O3	-162.2 (3)	C11—C10—C15—C14	1.8 (6)
C5—C6—C7—C8	-162.3 (4)	C9-C10-C15-C14	-174.4 (4)
C1—C6—C7—C8	18.0 (6)	C13—C14—C15—C10	-2.7 (6)
O3—C7—C8—N1	175.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H··· A
N1—H1 <i>N</i> ····O4 ⁱ	0.84 (4)	2.06 (4)	2.857 (4)	158 (4)
C13—H13…O2 ⁱⁱ	0.95	2.59	3.307 (5)	132
C5—H5…O1 ⁱⁱⁱ	0.95	2.55	3.369 (5)	145
O3—H3 <i>O</i> …O4	0.84	1.80	2.536 (3)	146

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x+1, -y+1, -z+1; (iii) x, -y+1/2, z+1/2.